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THE CONTACT PROBLEM FOR A HEAVY HALF-PLANE* 

V. M. ALEKSANDROV and L. M. FILIPPOVA 

The problem of a smooth rigid stamp penentration into an elastic half-plane is con- 

sidered with allowance for initial stresses produced by the half-plane own weight. 

An integral equation is derived for the contact pressure, whose solution is obtain- 

ed by the asymptotic method. It is shown that in this formulation the stamp 

displacement is uniquely determined, unlike in the classical problem of half-plane 
contact, where it is not determined. 

1. Let us consider a half-plane of incompressible isotropic elastic material subjected 

to forces of its own weight. These forces produce in the half-plane a hydrostatic state of 

stress 
un x (s??‘ =Y uss" = --vu"2 (1.1) 

where y,, is the specific weight and x2 a coordinate taken from the half-plane boundary. By 

virtue OF the material incompressibility it is undeformed in this state of stress. 
A small plane deformation is produced in this initial state by the action of a smooth 

rigid stamp at the half-plane boundary. The general equations defining small deformations of 

a prestressed incompressible body are of the form /l/ 

(1.2) 

where (J",S" are initial stresses, .Q are Cartesian coordinates of the body which in the 

initial state of stress is assumed undeformed, ZI,? are components of the additional displace- 
ment vector, and (Jsti* are small stress increments due to these. In the case considered here 

of plane deformation all subscripts in (1.2) assume the values land 2, and recurrent sub- 

scripts imply summation. The last of Eqs. (1.2) represents the condition of incompressibil- 

ity. 
For calculating the quantities G,,,L* we use the equation of state of an isotropic incom- 

pressible material under finite deformations /l/ 

where X, are Cartesian coordinates of the /body in the/ deformed state, IW,, are components 
of the Finger deformation measure, N,, are components of the tensor inverse of the Finger 
measure, 6,, is the Kronecker delta, U is the pressure, and a, and a2 are some functions 
of deformation invariants. Setting 

X, = x, + ug, umn = umtlo i IS,,*, u == 0" + u*, a, = al" + a,*, a2 -: a2' + Q~ * 

and linearizing (1.3) in the neighborhood of the initial state X," = 5, we obtain 

* 
unm = v (2 + -$) $ 4*bn,, , p = alo + aso, q* =- aI* - a** -1 (5* (1.4) 

For the Mooney material /l/ we have 

2 (C, + G). 

a, = 2C, = const and a2 = 2C, = const from which I"' 

Using the notation x1 = x;s, = y; u1 = u, u2 = u, y, = py, and q* = pq, from (l.l), (1.2), 
and (1.4) we obtain the following system of equations: 

(1.5) 

Let us consider the problem of action of a single normal concentrated force on the bound- 

ary of a heavy half-plane. The boundary conditions for this problem are (6(s) is the delta 
function) 

.Y= 0, 
dl 
--j-+_=- (1.6) 
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We introduce the new unknown function p : yu I q and, applying to (1.5) along the d-coordin- 
ate the Fourier transform, we obtain 

where the prime denotes the derivative with respect to the y-coordinate. 

boundary conditions assume the form 

Z' - ;ul: = 0, ?' ~ fJG.i +%--_ 
zrt p zrr. 

The solution of system (1.7) that satisfies conditions (1.8) at y 0 and 

damping as I/-+~1 is of the form 

The transformed 

(1.8) 

the conditions of 

(1.9) 

Using the Fourier transform we obtain the expression for the function ~(5, 0) which represents 

the kernel of the integral equation of the contact problem. From the tables /2/ we obtain 

m 

(1.10) 

In a similar problem, without allowance for initial stresses produced by the weight (the 

Flamant problem), we have /l/ 

~(5,0)=+~ $ D (1.11) 

where D is an undefined constant. 

Using the asymptotic representation of functions si(Z) and ci(z) as z+ 00 /3/, from 

(1.10) we obtain 

U(X-,O)~~~~ 
+_I (?I.)' 

IX.J?‘i 

Thus, when the weight of the half-plane is taken into account, the displacements produc- 

ed in it by the concentrated force are, unlike in (l-11), uniquely determined and decrease at 

infinity. 
For small y from (1.10) we obtain /3/ 

l'(I. I)) p&C- + $ y T +r + i 0 (Y) 
( 1 

where c is Euler's constant. This shows that as y --f 0 the solution becomes the classical 

one(l.11) and D 00. 
The boundary conditions at y U of the problem of rigid smooth stamp penetration into 

the half-plane, considered below, are of the form 

r=1,(3.). s 1 ~4 I.z-‘_a, &~=il, $j- 1 +o, izl>a (1.12) 

where 2a is the stamp width and f,(.r) is a function that defines the stamp shape. 

2. Formulas (1.10) and (1.12) yield for the contact pressure 2prp(z) the following in- 

tegral equation: 

(2.1) 

F(z) := In Iz IF,(z) + 12 IF,(z) + F3(Z), h=$, r=$, r(T)=+,(m) 

AS z - 0 function Fi (z) becomes of order 22. Equation (2.1) must be supplemented by the 

condition of balancing the stamp by the external force Q ~~ 2pnP 

I’= \ cp(t)dt (2.2) 

21 

The method of solving equations of the (2.1) type has been worked out in /4/, where it is 

shown that for large values of the parameter h the solution can be represented in the form 
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0, (T) = 0” (T) -I- li-‘0, (7) + 0 (h-2-y 1 0 (T) = ‘0 (z) 1/l - T2 (2.3) 

where E# 0 is an arbitrarily small positive number. 

Note that in real cases the parameter h-l is very small. For instance, when y0 : 102 

dyn/cm2, +I = IO” dny/cm2, and a=-: 103cm, we obtain h-l= 1O-B. Not too small h-' are theoretic-- 

ally possible in the case of superheavy material with very low shearing modulus and for very 
wide stamps. Owing to the smallness of parameter h-1 , we restrict in subsequent calculations 

the solution of Eq. (2.1) to terms of order 1-l. As shown in /4/, the function F(z) in the 

expression of the kernel of (2.1) does not affect functions o0 (T) and wl(?) , it is, there- 

fore, possible to set F- 0 without affecting the above accuracy. We would, however, point 

out that the calculation of several subsequent terms of expansion using the method of /4/does 
not present any fundamental difficulties. 

For an inclined stamp with a plane face we have 

fl (z) = 6 + kx, f (z) = a-lb m/- h 

where 6 is the stamp displacement. Applying the method of /4/ we obtain 

w (T) = 2.. I’ -L h-c -+ h-1 
n [ 

2 l’&(T) + +T - $1 - T?)Ilr*] + 0 (h-2-E) 

&(r) =(I- Y-t 2 r/l-T* 
-2 

sin [(Zk ,. l)arccosr] 

Ii=1 
(1x- + 1)” 

(2.4) 

The stamp displacement determined by formula 

j K (t)(~(t)dt= s/(O) 
-1 

is of the form 

(2.5) 

s=Q (In 21 -c + 0.4053nh-') + o(k-') (2.6) 
LJv 

Formula (2.6) shows that the allowance for stresses produced by the /material/ weight uniquely 

determines the stamp displacement, unlike in the classical contact problem for the half-plane, 
where, as shown in /1,5/, it remains undefined. As h-t 00 the stamp pressure distribution 
approaches in conformity with (2.4) the classical solution /5/, and 6-m. Let us now 
consider the parabolic stamp 

fl (I) : 6 - Ax?, j(t) = a-1 (R - A&‘) 
The solution of Eq. (2.1) is 

01 (T) = f _1- Aa (1 - 29) + h-’ [ J$ S, (7) t- + S, (t) -1 + 0 (h-*-e) 

s,(T)=+ +(I- ZG)$- z(l - 72)111&$ 

(2.7) 

Formula (2.5) yields 

na-'6 = P (111 2h - C) + 1.571Aa $ h-h (0.4053 P - 0.1415Aa) + 0 (k-?-E) (2.8) 

In the case of a parabolic stamp the contact zero width 2a is not a priori known, and 

is to be determined by the condition of boundedness of contact pressure at the contact zone 

boundary 0 (k-1) = 0. In dimensional quantities this condition, accurate to terms of order 
P.-' is of the form 

Q- xAa2=y Q 
2p ( I 

.‘nu. a + 0.3334Aa3 
1 

(2.9) 

whose solution is 

0 ~ a" (I-!.3334n-'h,-') + 0 (F.,-'-e) , G=l/$. Lo=-& 

Taking into account (2.10), instead of (2.7) we obtain 

2~(0(T)z+{(l - 5?)-1 ;i,'[1.3334rz + S,(z) 
" 

(2.10) 

(2.11) 

The substitution of (2.10) into (2.8) yields 

(2.12) 
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Formulas (2.10)-(2.12) show that as V'U, the constact pressure distribution approaches 

that given in /1,5/, dependingonthe contact zone dimension and on the force, while the stamp 

penetration increases indefinitely. 

The authors thank L. M. Zubov for valuable advice. 
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